[About] Version=1.0 Author=Nic Mail=support@hiasm.com [Type] Class=Element Interfaces=Matrix,MarshalByRefObject,Object Info=Encapsulates a 3-by-3 affine matrix that represents a geometric transform. [Property] Name=Sets the name of the component. ARG(string)|2| Order=Sets the MatrixOrder that represents the order of the multiplication. ARG(MatrixOrder)|20|(empty)|MatrixOrder Constructor=Sets the Constructor of the Matrix class. ARG(enum)|14|0|Constructor,Constructor2,Constructor3,Constructor4 Rect=Sets a Rectangle||RectangleF structure that represents the rectangle to be transformed. ARG(Rectangle||RectangleF)|20|(empty)|Rectangle PlgPts=Sets an array of three Point||PointF structures that represents the points of a parallelogram to which the upper-left, upper-right, and lower-left corners of the rectangle is to be transformed. The lower-right corner of the parallelogram is implied by the first three corners. ARG(Point[]||PointF[])|5| Pts=Sets an array of Point||PointF structures that represents the points to transform. ARG(Point[]||PointF[])|5| Point=Sets a PointF that represents the center of the rotation. ARG(PointF)|20|(empty)|PointF m11=Sets the value in the first row and first column of the new Matrix. ARG(float)|2| m12=Sets the value in the first row and second column of the new Matrix. ARG(float)|2| m21=Sets the value in the second row and first column of the new Matrix. ARG(float)|2| m22=Sets the value in the second row and second column of the new Matrix. ARG(float)|2| dx=Sets the value in the third row and first column of the new Matrix. ARG(float)|2| dy=Sets the value in the third row and second column of the new Matrix. ARG(float)|2| OffsetX=Sets the x value by which to translate this Matrix. ARG(float)|2| OffsetY=Sets the y value by which to translate this Matrix. ARG(float)|2| ScaleX=Sets the value by which to scale this Matrix in the x-axis direction. ARG(float)|2| ScaleY=Sets the value by which to scale this Matrix in the y-axis direction. ARG(float)|2| ShearX=Sets the horizontal shear factor. ARG(float)|2| ShearY=Sets the vertical shear factor. ARG(float)|2| Angle=Sets the angle of the rotation, in degrees. ARG(float)|2| [Methods] *doConstructor=Initializes a new instance of the Matrix class as the identity matrix. ARG()|1|0 *doConstructor2=Initializes a new instance of the Matrix class to the geometric transform defined by the specified rectangle and array of points. ARG(Rectangle rect, Point[] plgpts)|1|0 *doConstructor3=Initializes a new instance of the Matrix class to the geometric transform defined by the specified rectangle and array of points. ARG(RectangleF rect, PointF[] plgpts)|1|0 *doConstructor4=Initializes a new instance of the Matrix class with the specified elements. ARG(float m11, float m12, float m21, float m22, float dx, float dy)|1|0 *doDispose=Releases all resources used by this Matrix. ARG()|1|0 *doEquals=Tests whether the specified object is a Matrix and is identical to this Matrix. ARG(Object obj)|1|0 *doInvert=Inverts this Matrix, if it is invertible. ARG()|1|0 *doMultiply=Multiplies this Matrix by the matrix specified in the matrix parameter, by prepending the specified Matrix. ARG(Matrix matrix)|1|0 *doMultiply2=Multiplies this Matrix by the matrix specified in the matrix parameter, and in the order specified in the order parameter. ARG(Matrix matrix, MatrixOrder order)|1|0 *doReset=Resets this Matrix to have the elements of the identity matrix. ARG()|1|0 *doRotate=Prepend to this Matrix a clockwise rotation, around the origin and by the specified angle. ARG(float angle)|1|0 *doRotate2=Applies a clockwise rotation of an amount specified in the angle parameter, around the origin for this Matrix. ARG(float angle, MatrixOrder order)|1|0 *doRotateAt=Applies a clockwise rotation to this Matrix around the point specified in the point parameter, and by prepending the rotation. ARG(float angle, PointF point)|1|0 *doRotateAt2=Applies a clockwise rotation about the specified point to this Matrix in the specified order. ARG(float angle, PointF point, MatrixOrder order)|1|0 *doScale=Applies the specified scale vector to this Matrix by prepending the scale vector. ARG(float scaleX, float scaleY)|1|0 *doScale2=Applies the specified scale vector to this Matrix using the specified order. ARG(float scaleX, float scaleY, MatrixOrder order)|1|0 *doShear=Applies the specified shear vector to this Matrix by prepending the shear transformation. ARG(float shearX, float shearY)|1|0 *doShear2=Applies the specified shear vector to this Matrix in the specified order. ARG(float shearX, float shearY, MatrixOrder order)|1|0 *doTransformPoints=Applies the geometric transform represented by this Matrix to a specified array of points. ARG(Point[] pts)|1|0 *doTransformPoints2=Applies the geometric transform represented by this Matrix to a specified array of points. ARG(PointF[] pts)|1|0 *doTransformVectors=Applies only the scale and rotate components of this Matrix to the specified array of points. ARG(Point[] pts)|1|0 *doTransformVectors2=Multiplies each vector in an array by the matrix. The translation elements of this matrix are ignored. ARG(PointF[] pts)|1|0 *doTranslate=Applies the specified translation vector to this Matrix by prepending the translation vector. ARG(float offsetX, float offsetY)|1|0 *doTranslate2=Applies the specified translation vector to this Matrix in the specified order. ARG(float offsetX, float offsetY, MatrixOrder order)|1|0 *doVectorTransformPoints=Multiplies each vector in an array by the matrix. The translation elements of this matrix are ignored. ARG(Point[] pts)|1|0 *onEquals=Occurs after invoke the method doEquals and returns the result. ARG(bool)|2|104 *.OffsetX=Returns the x translation value of this Matrix. ARG(float)|3|107 *.OffsetY=Returns the y translation value of this Matrix. ARG(float)|3|107 *Clone=Creates an exact copy of this Matrix. ARG(Matrix)|3|0 *Elements=Returns an array of floating-point values that represents the elements of this Matrix. ARG(float[])|3|13 *GetHashCode=Returns a hash code. ARG(int)|3|1 *IsIdentity=Returns a value indicating whether this Matrix is the identity matrix. ARG(bool)|3|104 *IsInvertible=Returns a value indicating whether this Matrix is invertible. ARG(bool)|3|104 .Matrix=Returns the Matrix object. ARG(Matrix)|3|0 *angle=Defines the angle of the rotation, in degrees. ARG(float)|4|107 *dx=Defines the value in the third row and first column of the new Matrix. ARG(float)|4|107 *dy=Defines the value in the third row and second column of the new Matrix. ARG(float)|4|107 *m11=Defines the value in the first row and first column of the new Matrix. ARG(float)|4|107 *m12=Defines the value in the first row and second column of the new Matrix. ARG(float)|4|107 *m21=Defines the value in the second row and first column of the new Matrix. ARG(float)|4|107 *m22=Defines the value in the second row and second column of the new Matrix. ARG(float)|4|107 *matrix=Defines the Matrix by which this Matrix is to be multiplied. ARG(Matrix)|4|0 *obj=Defines the object to test. ARG(Object)|4|0 *offsetX=Defines the x value by which to translate this Matrix. ARG(float)|4|107 *offsetY=Defines the y value by which to translate this Matrix. ARG(float)|4|107 *order=Defines the MatrixOrder that represents the order of the multiplication. ARG(MatrixOrder)|4|0 *plgpts=Defines an array of three Point structures that represents the points of a parallelogram to which the upper-left, upper-right, and lower-left corners of the rectangle is to be transformed. The lower-right corner of the parallelogram is implied by the first three corners. ARG(Point[])|4|13 *point=Defines a PointF that represents the center of the rotation. ARG(PointF)|4|0 *pts=Defines an array of Point structures that represents the points to transform. ARG(Point[])|4|13 *rect=Defines a Rectangle structure that represents the rectangle to be transformed. ARG(Rectangle)|4|0 *scaleX=Defines the value by which to scale this Matrix in the x-axis direction. ARG(float)|4|107 *scaleY=Defines the value by which to scale this Matrix in the y-axis direction. ARG(float)|4|107 *shearX=Defines the horizontal shear factor. ARG(float)|4|107 *shearY=Defines the vertical shear factor. ARG(float)|4|107